Kernel Density Estimation on Spaces of Gaussian Distributions and Symmetric Positive Definite Matrices

نویسندگان

  • Emmanuel Chevallier
  • Emmanuel K. Kalunga
  • Jesús Angulo
چکیده

This paper analyses the kernel density estimation on spaces of Gaussian distributions endowed with different metrics. Explicit expressions of kernels are provided for the case of the 2-Wasserstein metric on multivariate Gaussian distributions and for the Fisher metric on multivariate centred distributions. Under the Fisher metric, the space of multivariate centred Gaussian distributions is isometric to the space of symmetric positive definite matrices under the affine-invariant metric and the space of univariate Gaussian distributions is isometric to the hyperbolic space. Thus kernel are also valid on these spaces. The density estimation is successfully applied to a classification problem of electro-encephalographic signals.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gyrovector Spaces on the Open Convex Cone of Positive Definite Matrices

‎In this article we review an algebraic definition of the gyrogroup and a simplified version of the gyrovector space with two fundamental examples on the open ball of finite-dimensional Euclidean spaces‎, ‎which are the Einstein and M"{o}bius gyrovector spaces‎. ‎We introduce the structure of gyrovector space and the gyroline on the open convex cone of positive definite matrices and explore its...

متن کامل

Deconvolution Density Estimation on Spaces of Positive Definite Symmetric Matrices

Motivated by applications in microwave engineering and diffusion tensor imaging, we study the problem of deconvolution density estimation on the space of positive definite symmetric matrices. We develop a nonparametric estimator for the density function of a random sample of positive definite matrices. Our estimator is based on the Helgason-Fourier transform and its inversion, the natural tools...

متن کامل

Diffusion Tensor Imaging and Deconvolution on Spaces of Positive Definite Symmetric Matrices

Diffusion tensor imaging can be studied as a deconvolution density estimation problem on the space of positive definite symmetric matrices. We develop a nonparametric estimator for the common density function of a random sample of positive definite matrices. Our estimator is based on the Helgason-Fourier transform and its inversion, the natural tools for analysis of compositions of random posit...

متن کامل

Comparison of the Gamma kernel and the orthogonal series methods of density estimation

The standard kernel density estimator suffers from a boundary bias issue for probability density function of distributions on the positive real line. The Gamma kernel estimators and orthogonal series estimators are two alternatives which are free of boundary bias. In this paper, a simulation study is conducted to compare small-sample performance of the Gamma kernel estimators and the orthog...

متن کامل

Learning general Gaussian kernel hyperparameters of SVMs using optimization on symmetric positive-definite matrices manifold

We propose a new method for general Gaussian kernel hyperparameter optimization for support vector machines classification. The hyperparameters are constrained to lie on a differentiable manifold. The proposed optimization technique is based on a gradient-like descent algorithm adapted to the geometrical structure of the manifold of symmetric positive-definite matrices. We compare the performan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Imaging Sciences

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017